LeapFrog Collaboration: Vers les Réseaux Industriels Déterministes

Maurine Kersalé Georgios Z. Papadopoulos Julián M. Del Fiore Pascal Thubert Nicolas Montayont

May 30, 2017

Outline

- 1 Introduction
- 2 Background Protocols
 - RPL
 - TSCH
- 3 LeapFrog Collaboration
 - Overhearing
 - Alternative Parent
- 4 Performance/Evaluation
 - Delay, Jitter, Duty Cycle, PDR
- 5 Conclusion/Perspective

Introduction

IoT & Industry 4.0

IoT

• Devices with embedded systems that connect to Internet

Industry 4.0

- Emerging application in IoT, objectives:
 - ✓ Simplify the production chains
 - ✓ Ease the deployment
 - ✓ Make the factory more flexible and adaptable
 - ✓ Reduced costs and improved efficiencies
- To do so, the network must be Reliable and Deterministic

Background Protocols

6TiSCH Protocol Stack

6TiSCH Protocol Stack

RPL - Routing Protocol

- ✓ Node Collaboration
- ✓ Tree Topology
- ✓ Default Parent (DP)

IEEE 802.15.4 - TSCH - MAC Protocol

- ✓ Defines if a node transmits, receives or sleeps
- ✓ Robust against external interference
- ✓ Schedules the transmissions to be done

TSCH + RPL

Problem Statement

Problem Statement

IoT

- Applications
 - ✓ High packet delivery ratio

Now, with **Industry 4.0**

- Controlling industries processes
 - ✓ High packet delivery ratio
 - ✓ Constant Delay
 - ✓ Minimize Jitter

However, the current technologies in IoT are based on best-effort.

- New Approach
 - ✓ Do not wait for failure to retransmit
 - ✓ Create replicas of packets in different paths

LeapFrog Collaboration

Overhearing

- \checkmark The medium is shared
- ✓ A node can listen to other transmissions

Alternative Parent (AP)

- ✓ Adds a new path for the packet to get to destination
- \checkmark The new path is related to the original

Alternative Parent + Overhearing

- ✓ When we transmit to DF, AP overhears
- ✓ When we transmit to AP, DF overhears

Simulation Setup

COOJA (Contiki OS)

Simulation Setup

Topology	Value
Topology	Multi-hop, see Figure 4
Number of nodes	8 (including the sink)
Number of sources	1 source
Node spacing	10 m (in average)
Simulation	Value
Duration	31 minutes
Traffic Pattern	$1 \ pkt/10 \ sec$
Payload size	17 bytes
Routing model	RPL [3]
MAC model	TSCH [1]
TSCH	Value
EB period	3.42~sec
LB period	$30 \; sec$
Slotframe length	101
Timeslot length	15 ms
Hardware	Value
Antenna model	CC2420
Radio propagation	2.4~GHz
Transmission power	0 dBm

RealSim plugin

- ✓ Default stage has defined values
- ✓ IdX stands for bad links for node X

Performance/Evaluation

Delay

Jitter

Duty Cycle

Packet Delivery Ratio

New Scenario

New Results

Conclusion/Perspective

Conclusion/Perspective

- LeapFrog Collaboration
 - ✓ Outperforms TSCH configurations in terms of delay and jitter
 - \checkmark The cost associated is the energy consumption
- Ongoing work
 - ✓ Adding retransmissions to improve PDR
 - ✓ Studying better the scheduling so as to reduce the delay and jitter
 - ✓ Analyzing better the interaction of RealSim and RPL in COOJA

Thank you